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Abstract: According to a distribution function of a random variable, generating one dimensional 
random number is very popular in numerical simulation. But in many cases, we need produce 
multidimensional random points that are rarely discussed in references. Here in our paper, by the 
application of conditional distribution for a random vector, we obtain a method that has wide 
applications in obtaining multidimensional random points according to some given random vector 
distributions.  

1. Introduction
Numerical simulation has wide applications nowadays. On how to generate random numbers 

according to a random distribution, there are mainly two types of generators that are respectively 
named as Physical true-random number generators and Mathematical Pseudo-random number 
generators. Here we focus on the latter one. For relevant studies, we can have references such as (1) 
and (2). As these generators only produce one dimensional random number, we will give a method 
which can be applied in many conditions to generate multidimensional random points according to 
some given probability distributions for random vectors. 

2. Review the common traditional method for generating random numbers of one dimension 
As we see in almost all kinds of popular calculus software, generating one dimensional random 

number is the basic content. Normally a simple coding is enough for that work. For example, to 
generate 18 random numbers according to the uniform distribution u [0,1] by the utility of Matlab 
software, we only need type the command ‘unifrnd (0,1,2,9)’ to derive 18 numbers in the form of a 
2-by-9 matrix

ans =
0.7922    0.6557    0.8491    0.6787    0.7431    0.6555    0.7060    0.2769

0.0971 
0.9595    0.0357    0.9340    0.7577    0.3922    0.1712    0.0318    0.0462 

0.8235. 
Now we let ξ be a random variable uniformly distributed over the interval [0,1]. As is well 

known, if a random variable has a probability distribution function F(𝑥𝑥) with an inverse function 
G(𝑥𝑥), then the function  F(𝑥𝑥) is the right distribution function of the random variable G(𝜉𝜉). For 
example, as the function G(𝑥𝑥) = ln � 1

1−𝑥𝑥
� is the inverse function of  F(𝑥𝑥) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑥𝑥) where  

x ≥ 0 (the distribution function of an exponential distribution Exp(1) with a parameter ‘1’), we 
see that the random variable ln � 1

1−𝜉𝜉
� distributes according to Exp(1). In other words, let ξ stands 

for the 18 numbers obtained as above mentioned, then the 18 random numbers yielded according to 
ln � 1

1−𝜉𝜉
�  are the corresponding simulated random numbers according to the distribution of 

Exp(1). 
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3. Discussion on one method for generating multidimensional random numbers 
As the discussions of simulation of a multidimensional random vector are rarely found in all the 

references we could find, here we make some explorations about that.  
For a two-dimensional population (X, Y) where X and Y are independent, we can easily generate 

an observation of a random sample with size ‘n’. As a matter of fact, we firstly obtain ‘2n’ numbers 
x1, xn, y1, yn where x1, xn are the simulated numbers according to the marginal distribution of X 
while y1, yn, according to the marginal distribution of Y. Then the number pairs ((x1, y1), (xn, yn)) 
form a simulated observation of a random sample ((X1, Y1), (Xn, Yn)). 

For a two-dimensional population (X, Y) where X and Y are dependent according to a specified 
distribution, say 

F(x,y), as F(x,y)=Fx(x)×FY|X(y|x), namely the joint distribution F(x,y) can be rewritten as the 
product of a marginal distribution Fx(x) and a conditional distribution FY|X(y|x), we firstly generate 
‘n’ numbers x1, xn according to the marginal distribution Fx(x) of X, and then for each given X=xi, 
we generate one corresponding simulate number yi according to the conditional distribution 
FY|X(y|xi). the number pairs ((x1, y1), (xn, yn)) form a simulated observation of a random sample 
((X1, Y1), (Xn, Yn)) arising from the population (X, Y).  

As we can understand, the same procedure can be normally extended to generate any 
n-dimensional random numbers according to an explicit distribution. That gives an answer to the 
question on how to generate multidimensional random points. To see that mentioned question, we 
can refer to the following network:

https://stackoverflow.com/questions/2969593/generate-n-dimensional-random-numbers-in-python
. 

P, generate 

4. An application example in generating 2-dimentional random numbers 

Let (X, Y) be a random population distributed uniformly over a circle surface x2+y2≤ 1 
a sample with sample size 100 by Matlab software. 

First, we generate 100 random numbers according to the uniform distribution u [0,1] by coding 
U=unifrnd (0,1,1,100); 
As the marginal distribution F(x) of X can be easily figured out as  
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We then simulate 100 numbers of X by calculating the values of the inverse function G(𝑥𝑥) of 
FX(x) by coding  

rand('seed',77); 
n=100; 
syms x  
rand('seed',77); 
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U=unifrnd (0, 1, 1, n); %to generate ‘n’ numbers distributed uniformly over the interval [0,1] and 
form a matrix U. 

Now noting that Y is uniformly distributed over the interval [-√1 − 𝑥𝑥2,−√1 − 𝑥𝑥2], for each 
given X=xi we simulate corresponding yi, i=1, 2, n. Moreover, to see the result intuitively, we draw 
in the figure 1.1 the unit circle as well as the 100 simulated random points. 

for i=1: n 
X=solve ((1/2) *(2*x*sqrt(-x^2+1) +2*asin(x)+pi)/pi-U (1, i)); 
Y=unifrnd(-sqrt(1-X^2), sqrt(1-X^2),1,1); 
plot (X, Y,'*'); % we draw each random point (xi, yi), i=1, 2, n 
hold on % to see the efficiency, we draw the unit circle to see if the simulated points are 

uniformly distributed 
end 
theta=0: pi/100:2*pi; 
plot(cos(theta), sin(theta),'r') 
axis equal 

Figure 1. The result of 100 points simulated uniformly distributed over a unit circle surface 
Just as is shown in the above figure 1, the simulation effect seems desirable. 
Admittedly, there are other ways to generate random points that are uniformly distributed over a 

circle surface, see reference (3) for an example, but the method presented in reference (3) is based on 
a transformation that results in two one-dimensional independent random distributions. It is obvious 
that the generating method presented here in our paper has wider applications.  
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